PROCHLO: Strong Privacy for Analytics in the Crowd

Andrea Bittau¹, Úlfar Erlingsson¹, Petros Maniatis¹, Ilya Mironov¹, Ananth Raghunathan¹, David Lie², Mitch Rudominer³, Ushasree Kode³, Julien Tinnes³, Bernhard Seefeld³

¹Google Brian

²Google Brian and U. Toronto

³Google

Presenter: Jinyang Li (jinyang7)

Systems Analytics and Privacy

Monitor API usage on software platforms

How to do the analytics?

How to handle the <u>private</u> data carefully?

ESA Architecture and Prochlo Realization

- Perform such monitoring with
 - High utility
 - Strong privacy guarantees
- Encode, Shuffle, Analyze
 - Framework for monitoring
 - Privacy protection
 - Fit to software engineering
- Prochlo
 - A hardened ESA realization
 - SGX
 - Oblivious shuffling
 - Threshold crypto & blinding

Naïve API Monitoring

- What could go wrong?
- Uncommon API in an unpopular App
- At-least-K uses of an API
- Hard to get right!
 - Certain groups favor certain app features
 - IP address may reveal location
 - Etc.

Differential-Privacy Data Analysis

- DP gives (ε, δ) upper-bound on privacy loss
- Holds for all questions & for all attackers priors

$$Pr[M(D) \in S] \le e^{\epsilon} Pr[M(D') \in S] + \delta$$

Multiplicative upper bound

Very small failure rate

- Bad fit for software engineering
 - New algorithms and systems
 - Protect the databases forever

Randomization & Local DP

- Randomized response
- No central (hackable) DB of real, private user data
- Google's RAPPOR system
 - Software monitoring system for Chrome
 - Since 2014
 - Largest deployed differential private mechanism solution
 - Dozens of purposes, billions of randomized daily reports
- Limitations:
 - Only good for very popular things and very large datasets
 - Too statistical
 - Too much noise (grows as sqrt(#reports))

Encoding Fragments and Crowds

Anonymity, Batching and Shuffling

- Shuffling provides anonymity
 - Strips IP address & metadata
- Create big crowds
 - By delaying and batching
 - Per-day, in 100s of millions
- Randomly shuffle the reports
 - Break linkability between fragments
 - Hide ordering and timing information

Shuffling and Nested Encryption

Randomized Thresholds, Blinding, and Crowdbased DP

Randomized thresholding gives another form of DP

Blinding & Crowd Thresholding

+ Cryptographic blinding of crowds

Risks in the ESA Shuffler

- Shuffling must be protected, isolated & opaque
- Insider risk, accidental server logs, etc.
- Malicious traffic analysis
- Prochlo
 - Hardened implementation of ESA shuffler
 - SGX + oblivious shuffling

Prochlo StashShuffle

StashShuffle Buckets

StashShuffle Distribution

Intermediate Array

StashShuffle Compression

Prochlo StashShuffle

Shuffler Performance

N	Permutation strength	Time to shuffle	SGX mem used	Overhead of passes
10M	2^{-80.1}	738 s	22 MB	3.5x
50M	2^{-81.8}	1 h	52 MB	3.4x
100M	2^{-81.9}	2.1 h	78 MB	3.7x
200M	2^{-64.5}	4.1 h	69 MB	3.3x

Utility Performance

of vocab words

More experiments

- Perms: User Action Regarding Permissions
 - Multidimensional like API example
 - High utility with strong privacy $\varepsilon = 1.2$, $\delta = 10^{-7}$
- Suggest: Predicting the Next Content Viewed
 - High utility with intuitive privacy guarantee due to fragments
- Flix: Collaborative filtering
 - Utility equals state-of-the-art joint-distribution model
 - Strong privacy ($\varepsilon = 2.2$) + anonymity = no chance of re-identification

Conclusion

- Making strong privacy suitable for use in standard software engineering
- Open source:
 - https://github.com/google/rappor
 - https://github.com/google/prochlo
 - https://fuchsia.googlesource.com/cobalt/

Discussion

- "Just trust Intel" vs. "Just trust Google"
- Attack model: "Shuffler is honest-but-curious"
- Large latency