
ScaleFS: Scaling a file system to
many cores using an operation

log
Srivatsa S. Bhat, Rasha Eqbal, Austin T. Clements, M. Frans Kaashoek, Nickolai

Zeldovich - MIT CSAIL

Presented by: Samarth Kulshreshtha

What’s the problem?

Core 0 Core 1

Memory
ext4

fileA: 200
fileB: 400

dirA’s block

create(dirA/fileA) create(dirA/fileB)

Both cores contend on
dirA’s block even though

these two operations
are commutative.

Cache line conflicts ->
Scalability issues.

Scalable Commutativity
Rule.

Linux ext4 just does not scale with multiple cores

Related work

● sv6 = ScaleFS - Crash Safety
● NOVA and iJouranling maintain per-inode logs as compared to per-core logs
● No file system completely decouples the in-memory file system from the

on-disk file system
● ReconFS limited to non-volatile memory
● Hare does not provide persistence (only in-memory)
● SpanFS provides persistence to Hare but solves it by distributing files and

directories across cores, some operations require two-phase commits

Durability Semantics for fsync

● fsync’s effects are local
● file system can initiate any fsync operations on its own (OOM)
● rename will not cause a file or directory to be lost
● on-disk data structures must be crash safe

All together, the final semantics of fsync are that it flushes changes to the

file or directory being fsynced, and, in the case of fsync on a directory, it also
flushes changes to other directories where files may have been renamed to,

both to avoid losing files and to maintain internal consistency

System overview

File creation

● MemFS
○ Allocates a fresh mnode number
○ Allocates an mfile structure for the file
○ Adds mfile to the mnode hash table
○ Adds an entry to the directory’s hash table
○ Adds a logical operation to the directory’s oplog

● Multiple cores can create files concurrently without cache-line
conflicts even when creating files in the same directory

fsync

● On a directory:
○ MemFS combines the log entries from all per-core logs for the mnode
○ Sends changes in timestamp order to DiskFS
○ mnodes without inodes

■ Allocate on-disk inodes
■ Update mnode-inode table

● On a file:
○ Scans page cache for dirty bits and write to DiskFS
○ Compare in-memory and on-disk length and update the on-disk file

● Orphans!

Background flush

● Periodically flush in-memory changes to disk by invoking sync
○ Iterate over all dirty mfiles (dirty bit per file?) and all mnode oplogs
○ Flush them to disk by invoking fsync
○ Combine them to a single physical transaction in DiskFS (maximum

allowed size)

Readdir (list directory contents)
● Enumerate the in-memory hash table
● If not present then look up the inode number and read on-disk

representation from DiskFS
● Translate inode numbers of files to mnode numbers using mnode-inode table
● Nodes with no mnode numbers get a new mnode number (not accessed yet)

● Look up corresponding page in mfile’s page cache and return contents
● If page not present

○ Lookup inode number and ask DiskFS to read in the data for that inode
number from the disk

File read

● Update page cache (possibly getting page from disk like in read)
● Mark page as dirty
● If file length extended then adjust mfile’s length

File write

Crash recovery

● Post crash, DiskFS recovers the on-disk file system by replaying the on-disk
journals after sorting all per-core journals

● Deal with orphan inodes at boot by freeing any inodes with a zero link count

Design Goals!

● Performance [P]
● Correctness [C]

Making operations orderable [P, C]

● MemFS uses lock free-reads which make it difficult to
determine the operation order

● Problem:
○ Two threads T1 and T2
○ T1 executes rename(b, c) and T2 executes

rename(a, c)
● Solution?

○ Use RDTSCP - timestamp reads are not reordered
by the processor

● All directory modifications in the in-memory FS must
be linearizable - done by reading timestamp at the
appropriate linearization point

Timestamping lock-free reads [P, C]

● In the previous example rename(b, c)’s linearization point should come first
● How to order lock-free reads with writes?

○ MemFS ensures that read operations happen before any writes in the
same operation

○ Use seqlocks when doing a lock-free read and reading timestamp
○ This scales well because it allows read only operations to avoid

modifying shared cache-lines

Merging operations [C]
● Timestamps of operations allows operations executed across cores to be ordered
● Per core logs maintained to avoid communication when adding entries
● Merge when fsync or sync is invoked
● In this case op1 will be missing from the log even when LP1 < LP2
● To avoid this, for each core keep track if an operation is currently executing and if

so then what is its starting timestamp
● During merge, get timestamp for start of the merge and wait for any running

operation

Flushing operation log [P,C]

● Absorption - remove operations that
logically cancel each other

● Cross-directory renames to handle moving
a file outside a directory and then flushing
it

● Internal consistency:
○ Disk links point to initialised nodes on

the disk
○ No orphan directories on the disk
○ On-disk FS does not contain a loop

after a crash

Implementation

● sv6 (research operating system centered around Scalable Commutativity
Rule)

● ScaleFS does not support all FS calls
● Combines oplogged (directory state, file link count) and non-oplogged

metadata (file length, modification times) while flushing
● Uses buffer cache to store directory, inode, and bitmap blocks, to speed up

read-modify-write operations

Evaluation

Does durability reduce conflict freedom?

Performance with varying cores

Single core performance

Performance with varying disks [4 cores]

Memory overhead

Comments

● Quite thorough and thoughtful design
● Better techniques for absorption
● Why not lock the lowest common ancestor instead of a global lock?
● How much do page faults cost? (latency between MemFS and DiskFS)
● Is it practical?
● Security aspects?

:)

