
Multiprogramming a 64 kB
Computer

Safely and Efficiently

Amit Levy et al, Proceedings of the 26th
Symposium on Operating Systems Principles.

ACM, 2017

Presented by Chaitra Niddodi

Problem

• Microcontrollers have limited resources – low power budget, low

memory capacity, limited hardware protection mechanism

• These systems often use the same memory regions for applications

and the OS

• Emerging class of embedded applications are software platforms,

rather than single purpose devices

• Lack of support for multiprogramming features – fault isolation,

dynamic memory allocation, flexible concurrency

2

Previous Approaches & Issues

•Give up on isolation - write completely bug-free code -> No

isolation between components

•Whole system updates only -> Cannot replace individual

components without restarting the whole system

•Static memory allocation to ensure long-running and fault-free

operation -> Fixed concurrency at compile-time

3

Proposed Approach - Tock

● Tock - new operating system for low-power platforms that takes

advantage of

○ protection mechanisms provided by Memory Protection Unit

○ type-safety features of Rust to provide a multiprogramming

environment

● Tock supports

○ Isolation of software components

○ Update/restart/remove individual (user-space) components

independently

○ Balance safety and reliability of static allocation with
flexibility of dynamic allocation

4

Capsules

● Rust code linked into kernel

● Event-driven execution with

asynchronous I/O

● Shared stack, no heap

● Communicate via references &

method calls

● Low overhead

● Used for device drivers, timers

● Trusted

5

Kernel Memory Consumption

6

ROM size (B) RAM size (B)
Tock 41744 9704
TinyOS 39604 10460

Example 1: “blink”

Example 2: Networked sensor

ROM size (B) RAM size (B)
Tock 3208 916

TinyOS 5296 72
FreeRTOS 4848 2984

Capsule Isolation

7

struct DMAChannel {
 length: u32,
 base_ptr: *const u8,
}

impl DMAChannel {
 fn set_dma_buffer(&self, buf: &'static [u8])
{
 self.length = buf.len();
 self.base_ptr = buf.as_ref();
 }
}

● Exposes the DMA base pointer and length as a Rust slice

Processes & Isolation

● Standalone executables in any

language

● Scheduled preemptively

● System calls & IPC for

communication

● Higher overhead - Context switch

for communication (340 cycles)

● Untrusted applications

● MPU provides memory isolation

between applications as well as

between applications and the

kernel 8

How do capsules and
processes interact ?

9

Software Timer

HW Alarm
Kernel

Example - Software Timer

10

Software Timer Driver

FAIL

Static allocation must trade off memory efficiency and
maximum concurrency

Timer State - Static Allocation

11

Software Timer DriverAES Driver Bluetooth Driver

FAIL

Can lead to unpredictable shortages.
One process’s demands impacts capabilities of

others.

Timer State - Dynamic Allocation

12

● Allocations for one process do not affect others

● System proceeds if one grant section is exhausted

● All process resources freed on process termination

● Grants ensure that references are only accessible when
process is alive

Grant section

Heap
Data

Stack

Code

Process
Accessible
Memory

Grants - Per Process Kernel Heaps

13

Software Timer Driver

Grants balance safety and reliability of static
allocation with flexibility of dynamic allocation

Grants - Kernel heap safely borrowed
from processes

14

Case Study:
The Signpost

Platform

15

● Modular city-scale sensing platform
⎯ Ambient conditions tracking
⎯ Pedestrian density
⎯ Noise monitoring

● 8 pluggable modules
⎯ Instead of deploying a new platform
⎯ 15 mA power budget
⎯ Microcontroller + Sensors

● Sensing applications
⎯ Open research platform
⎯ Mostly run on modules
⎯ Several apps on the same module

Currently deployed @ U.C. Berkeley

Signpost Overview

16

Ambient Module Audio Module
Process LoC 6990 6688

Capsules LoC 4479 3985
Platform LoC 3252 3244

Each Signpost module runs a Tock
kernel

Tock on Signpost

17

● Kernels for multicore systems ?

● Higher level security abstractions - e.g. application

permissions, specify policies in kernel

● Distributed operating system - platforms like Signpost

running multiple microkernels

Future Work

18

● Hardware parallelism ?

● Need to port applications

● Attack/Threat model ? Applications developed by

3rd parties are modelled as malicious

● Dependency on Rust programming language -

support ?

Comments

19

