Multiprogramming a 64 kB
Computer
Safely and Efficiently

Amit Levy et al, Proceedings of the 26th
Symposium on Operating Systems Principles.
ACM, 2017

Presented by Chaitra Niddodi

Problem

e Microcontrollers have limited resources — low power budget, low
memory capacity, limited hardware protection mechanism

e These systems often use the same memory regions for applications
and the OS

e Emerging class of embedded applications are software platforms,
rather than single purpose devices

e Lack of support for multiprogramming features — fault isolation,

dynamic memory allocation, flexible concurrency

U2F App HOTP GPG Smart Card
Indicate Key-

Attest Y2F ~ount P-256 l board Count HMAC B ccD

Register HID

Key ECC/
Gen RSA

Capacitive

Touch < Encryption
= Oracle

Previous Approaches & Issues

*Give up on isolation - write completely bug-free code -> No

isolation between components

*Whole system updates only -> Cannot replace individual

components without restarting the whole system

*Static memory allocation to ensure long-running and fault-free

operation -> Fixed concurrency at compile-time

Proposed Approach - Tock

® Tock - new operating system for low-power platforms that takes
advantage of
o protection mechanisms provided by Memory Protection Unit
O type-safety features of Rust to provide a multiprogramming
environment
® Tock supports
o Isolation of software components
o Update/restart/remove individual (user-space) components
independently

o Balance safety and reliability of static allocation with
flexibility of dynamic allocation

Capsules

Rust code linked into kernel
Event-driven execution with
asynchronous 1/0 Virtual Alarm Timer SysCalls
Shared stack, no heap

Communicate via references &

Timer Driver
method calls Dispatch KOS

XV Process

Low overhead

Used for device drivers, timers
Trusted

Kernel Memory Consumption

Example 1: “blink”

ROM size (B) RAM size (B)

Tock 3208 916
TinyOS 5296 72
FreeRTOS 4848 2984

Example 2: Networked sensor

ROM size (B) RAM size (B)
Tock 41744 9704
TinyOS 39604 10460

Capsule Isolation

struct DMAChannel {
length: u32,
base_ptr: *const us8,

}

impl DMAChannel {
fn set_dma_buffer(&se1f4 buf: &'static [u8])|

{
self.length = buf.len()}

self.base_ptr = buf.as_ref();

}
}

Exposes the DMA base pointer and length as a Rust slice

14

Processes & Isolation

e Standalone executables in any
language

e Scheduled preemptively

e System calls & IPC for Process

communication

e Higher overhead - Context switch o . Process
for communication (340 cycles) Dispatch Rl
e Untrusted applications Process

e [MPU provides memory isolation
between applications as well as
between applications and the

kernel 8

How do capsules and
processes interact ?

Example - Software Timer

Software Timer

Kernel

Timer State - Static Allocation

Software Timer Driver

Static allocation must trade off memory efficiency and
maximum concurrency

11

Timer State - Dynamic Allocation

AES Driver Software Timer Driver Bluetooth Driver

Can lead to unpredictable shortages.
One process’s demands impacts capabilities of

others.
12

Grants - Per Process Kernel Heaps

e Allocations for one process do not affect others

System proceeds if one grant section is exhausted

All process resources freed on process termination

Grants ensure that references are only accessible when

process is alive

Grant section

=
1T

Heap
Data
Stack

Process
Accessible
Memory

13

Grants - Kernel heap safely borrowed
from processes

e e cler e e -

N

Software Timer Driver

Grants balance safety and reliability of static
allocation with flexibility of dynamic allocation

14

Case Study:
The Signpost
Platform

Signpost Overview

. Modular city-scale sensing platform
_ Ambient conditions tracking
_ Pedestrian density
_ Noise monitoring
. 8 pluggable modules
_ Instead of deploying a new platform
— 15 mA power budget
_ Microcontroller + Sensors
. Sensing applications
_ Openresearch platform
— Mostly run on modules
_ Several apps on the same module

Currently deployed @ U.C. Berkeley

16

Tock on Signpost

Each Signpost module runs a Tock
kernel

Ambient Module

Process LoC 6990
Capsules LoC 4479
Platform LoC 3252

Audio Module
6688
3985
3244

17

Future Work

. Kernels for multicore systems ?

. Higher level security abstractions - e.g. application
permissions, specify policies in kernel

. Distributed operating system - platforms like Signpost

running multiple microkernels

18

Comments

e Hardware parallelism ?

e Need to port applications

e Attack/Threat model ? Applications developed by
3rd parties are modelled as malicious

e Dependency on Rust programming language -

support ?

19

